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Based on the fact that the electromagnetic potential can interact with charged particle

and using the Dirac field of conjugated mass and energy introduced in a previous paper,

we show, in the framework of quantum field theory (QFT), that it would be possible

experimentally to highlight significant di↵erences in the probabilities of occurrence of

electron and positron states depending on whether electrons and positrons states of

conjugated mass and energy exist or not.
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1. Introduction

The Dirac equation with conjugated mass (i.e. negative mass) has made it possible
to make sense of the existence of the right-handed antineutrino.1 Positive mass for
the left-handed neutrino and negative mass for the right-handed antineutrino but
the absolute value of the mass (at rest) is the same. We can say that this is possible
by the fact that the energy equation contains the squared mass m

E =
p

(cp)2 + (mc2)2, (1)

but in this case the energy is kept positive. On the other hand, the quadratic form
for the energy equation

E
2 = (cp)2 + (mc

2)2, (2)

gives us the possibility to look at quantum states with the same absolute value of
mass and energy so new quantum states have conjugated mass and also conjugated
energy.
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Physics rejects negative energy because it is assumed that it violates causality
and leads to physically undesirable e↵ect such as the runaway e↵ect.2 But this one
disappears in a bi-metric approach3 and if causality is not a fundamental law but
the simple fact of the second law of thermodynamics it no longer constitutes an
obstacle to negative energy at rest4 at quantum scale. Furthermore, the Dirac theory
does not prohibit negative masses and energy5,6 as well as the Janus cosmological
model (JCM)3,7,8 in which negative mass antimatter takes the place of unidentified
dark matter and dark energy well known in cosmology. In quantum mechanics the
exclusion of conjugated energies through the use of an antiunitary and antilinear
time reversal operator T is a simple hypothesis.9 Nothing forbids to use a unitary
and linear T operator.

According to Ref. 9, there are two types of antimatter states. The first one,
Dirac’s antimatter state, is associated with an antiunitary PT transformation. The
other, the Feynman’s one, is the apparently missing cosmological antimatter state,
which actually belongs to Sakharov’s twin universe.10–12 It is associated with a
unitary PT transformation and consists of the same antiparticles states but of
conjugated mass and energy. It has been established that the reversal of time in
Sakharov’s twin universe must be accompanied by a sign inversion of mass and
energy.13,14

Therefore, it is desirable to find a test to check whether or not fermions and an-
tifermions of conjugated mass and conjugated energy exist. In this work, we propose
a test based on the fact that an electromagnetic potential (not field) transforms a
fermion (antifermion) state of positive mass and energy into a conjugated mass and
energy antifermion (fermion) state. By this we will show significant di↵erences in
the probabilities of occurrence of electron and positron states submitted to the ac-
tion of an electromagnetic potential depending on whether electrons and positrons
states of conjugated mass and energy exist or not.

2. Dirac Field of Positive and Negative Energy

Dirac fields operators in flat spacetime with mass +µ and �µ (i.e. µ > 0) are given,
respectively, by15

 +(r, t) =

Z
d
3p
X

S

⇣
�+,S,p(r)a+,S,p(t) + ��,S,p(r) a

†
�,S,�p(t)

⌘
, (3)

and

 �(r, t) =

Z
d
3p
X

S

⇣
⇥�,S,p(r)b�,S,p(t) +⇥+,S,p(r) b

†
+,S,�p(t)

⌘
, (4)

where aj,S,p (bj,S,p) and a†j,S,p (b†j,S,p) are the operators of annihilation and cre-
ation of fermions of positive (negative) mass and energy in the space of the number
of occupations of the one-particle state characterized by quantum numbers j, S and
p. They obey the usual anti-commutation relations. The index j = (+,�) charac-
terizes positive and negative frequencies. S = (R,L) is the state of helicity along
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momentum vector p. The vector p is the classical canonical variable of momentum
conjugated to the vector of position r. �j,S,p(r) and ⇥j,S,p(r) are the stationary
states of

H
(+)
o �j,S,p(r) = j"(p) �j,S,p(r), (5)

and

H
(�)
o ⇥j,S,p(r) = j"(p) ⇥j,S,p(r). (6)

The one-particle hamiltonian operator H(±)
o of Dirac for a free particle of spin 1/2

and mass ±µ is given by

H
(±)
o = c↵ ·P± �µc2. (7)

� and ↵u (u = x, y, z) are the Dirac matrices. c is the speed of the light in vacuum.
"(p) is the eigenvalue of energy

"(p) = (c2p2 + µ
2c4)1/2. (8)

States �j,S,p(r) and ⇥j,S,p(r) can be expressed as follows:

�j,S,p(r) = �j,S,p
ei(p·r/~)p
(2⇡~)3

, ⇥j,S,p(r) = ✓j,S,p
ei(p·r/~)p
(2⇡~)3

, (9)

where �j,S,p and ✓j,S,p are the Dirac’s spinors and they are related by15

✓
✓+,S,p

✓�,S,p

◆
=

 
⌘ sin(') cos(')

cos(') �⌘ sin(')

! 
�+,S,p

��,S,p

!
, (10)

and the operators by
 
b†+,S,�p

b�,S,p

!
=

 
cos(') ⌘ sin(')

�⌘ sin(') cos(')

! 
a†�,S,�p

a+,S,p

!
, (11)

where ⌘ = +1 for S = R and �1 for S = L. The angle ' is defined by relations

cos(') =
µc2

"(p)
, sin(') =

c|p|

"(p)
. (12)

Transformations (10) and (11) are the results of a reversal of mass and energy and
according to Ref. 9 are equivalent to a unitary time reversal operation. Transfor-
mation (11) is di↵erent from that given in Ref. 16 because the authors uses an
antiunitary time reversal operation.

In (3) matter and antimatter have masses and energies that are positive. In
(4) matter and antimatter have exactly opposite masses and energies, i.e. negative.
In addition, the electric charges in (3) are exactly opposite to those in (4). So,
positive mass matter in (3) becomes negative mass antimatter in (4) and positive
mass antimatter in (3) becomes negative mass matter in (4). Note that the anti-
commutations relations between operators “a” and “b” are not zero and depend
on the energy and the momentum. A similar e↵ect occurs in the case of a curved
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space-time.16,17 So, the zero particle state for one observer is not zero for another.
In our case, the reason for this is that the vacua |0ia and |0ib are not invariant
under an operation of unitary time reversal Tu (that is to say, energy inversion)

|0ia
Tu
 !|0ib. (13)

However, note that each vacuum is CPT invariant (for an antiunitary time reversal
operator T). Finally, we can show with (10) and (11) and the anti-commutation
rules of operators that

 +(r, t) =  �(r, t), (14)

it is the same Dirac field but with two di↵erent representations or two basis states
of fermions–antifermions. Actually, the Dirac’s spinors �j,S,p and ✓j,S,p characterize
enantiomorphous twin states with opposite charges and masses.

3. Axial Chirality

The concept of axial chirality in the framework of quantum mechanics gives a
geometric meaning to the strange notions of negative energy (or mass) and unitary
time reversal. It allows to show the enantiomorphous (chiral) character of the two
kinds of fermions–antifermions states: those (i.e. �j,S,p) associated with Dirac fields
of positive masses and energies and those (i.e. ✓j,S,p) with Dirac fields of negative
masses and energies.

Consider the one-particle Schrödinger equation with negative and positive mass

i~ @

@t
⇥j,S,p(r, t) = H

(�)
o ⇥j,S,p(r, t), i~ @

@t
�j,S,p(r, t) = H

(+)
o �j,S,p(r, t), (15)

whose time-independent solutions are

⇥j,S,p(r, t) = ⇥j,S,p(r)e
�i[ j"(p)t

~ ]
, �j,S,p(r, t) = �j,S,p(r)e

�i[ j"(p)t
~ ]

. (16)

Let us look at the time-related part of these solutions. Figure 1 shows a schematic
illustration of this time-related part with a series of straight (black) segments that
rotate around a vertical axis representing the time axis t. To increase readability,
these line segments are drawn within circles centered on this axis. Di↵erent times t
are shown as successive events on the left side of the figure. The angle between two
adjacent line segments in a series along a time axis has the absolute value "(p)/~.
The vertical line M in the middle of the figure separates two sets of temporal
segments and acts as a mirror for one another. Hence, the sequence on the right
is the mirror image of the sequence on the left side, it is its chiral representation.
The direction of rotation of the segment on the right-hand side is opposite to that
of the left-hand side. On the left sequence, the phase is "(p)t/~ while on the right
sequence it is �"(p)t/~. This is equivalent to changing the sign of "(p) or t.

Actually, such inversion of the sign of time or energy mathematically conveys
a more fundamental geometric property, namely that the two sequences on either
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side of M are enantiomers with axial chirality. The one in the first column is dextro-
rotatory while the other is levorotatory. It is a helicity along the time axis (mirror
or chirality axis M) described by the Dirac’s spinor. For this reason, the two sets
of Dirac’s spinors (i.e. �j,S,p and ✓j,S,p) are called enantiomorphs.

On the other hand, an antiunitary time reversal operation is characterized by15

t! �t and i! �i, (17)

and a unitary one by

t! �t and i! i. (18)

It can be seen in Fig. 1 that along the first series (i.e. dextrorotatory) a shift towards
�t goes with an electrical charge +e, whereas towards +t there is a charge �e. In
the second series (i.e. levorotatory) the exact opposite holds. It is worth noting that
the exponential term at the bottom left in Fig. 1 behaves as if, in order to obtain it,
one had made an antiunitary time reversal in the exponential term at the top left.
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Fig. 1. On the left side of the vertical mirror M, the first series of segments (black lines within cir-

cles) rotate around a vertical axis in a complex plane: it illustrates the exponential term e
−i[

jε(p)t
~ ]

.

This sequence is related to the matter (j = +) and antimatter (j = −) spinor contained in φ±,S,p.

The two matter–antimatter spinor states are represented by thick vertical up (i.e. j = +) and

down (i.e. j = −) arrows, whose axis is circled using conventional (counterclockwise) direction.

The associated electrical charge is −je. On the right side, the second series is related to the matter

(j = −) and antimatter (j = +) spinor contained in θ∓,S,p and the associated charge is je. On

the left, a time scale t has been represented which is valid for both series. The variable t (on the

right of exponential terms) is inverted with respect to that on the left. The small vertical black

arrows are the arrows of time, they point toward the flow direction of events which accompanies

the spinor. For example, if one moves along the left-hand (right-hand) sequence according to the

−t direction, the spinor is pointing downwards (upwards). It describes the sense of rotation of the

black segments in the series. On the contrary, if one moves in the +t direction then the spinor is

pointing upwards (downwards). In both cases the phase is +ε(p)t/~
�
−ε(p)t/~

�
or dextrorotatory

(levorotatory).

or chirality axis M) described by the Dirac’s spinor. For this reason, the two sets1

of Dirac’s spinors (i.e. φj,S,p and θj,S,p) are called enantiomorphs.2

On the other hand, an antiunitary time reversal operation is characterized by153

t → −t and i → −i, (17)4

and a unitary one by5

t → −t and i → i. (18)6

It can be seen in Fig. 1 that along the first series (i.e. dextrorotatory) a shift towards7

−t goes with an electrical charge +e, whereas towards +t there is a charge −e. In8

the second series (i.e. levorotatory) the exact opposite holds. It is worth noting that9

the exponential term at the bottom left in Fig. 1 behaves as if, in order to obtain it,10

one had made an antiunitary time reversal in the exponential term at the top left.11

Note also that the exponential terms at the top and bottom right of Fig. 1 behave12
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Fig. 1. On the left side of the vertical mirror M, the first series of segments (black lines within cir-

cles) rotate around a vertical axis in a complex plane: it illustrates the exponential term e
�i

h
j"(p)t

~
i

.

This sequence is related to the matter (j = +) and antimatter (j = �) spinor contained in �±,S,p.

The two matter–antimatter spinor states are represented by thick vertical up (i.e. j = +) and

down (i.e. j = �) arrows, whose axis is circled using conventional (counterclockwise) direction.

The associated electrical charge is �je. On the right side, the second series is related to the matter

(j = �) and antimatter (j = +) spinor contained in ✓⌥,S,p and the associated charge is je. On

the left, a time scale t has been represented which is valid for both series. The variable t (on the

right of exponential terms) is inverted with respect to that on the left. The small vertical black

arrows are the arrows of time, they point toward the flow direction of events which accompanies

the spinor. For example, if one moves along the left-hand (right-hand) sequence according to the

�t direction, the spinor is pointing downwards (upwards). It describes the sense of rotation of the

black segments in the series. On the contrary, if one moves in the +t direction then the spinor is

pointing upwards (downwards). In both cases the phase is +"(p)t/~(�"(p)t/~) or dextrorotatory
(levorotatory).
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Note also that the exponential terms at the top and bottom right of Fig. 1 behave
as if, to obtain them, one had made a unitary time reversal in the exponential term
at the top left.

4. Coupling to Electromagnetic Potential

Taking into account the Heisenberg representation, Dirac’s Hamiltonian for free
particles of positive mass and energy H

(+)
o (t) is simply given by18

H
(+)
o (t) ⌘

Z
d
3r †

+(r, t)H
(+)
o  +(r, t) + C

=

Z
d
3p
X

j,S

"(p)a†j,S,p(t)aj,S,p(t), (19)

where

C ⌘ 2�(0)

Z
d
3p "(p). (20)

and the coupling to the classical electromagnetic potentials, � and A imposed from
the outside by a macroscopic source is18

H
(+)
1 (t) ⌘

Z
d
3r
⇣
�(r, t)⇢(+)(r, t)�A(r, t) · J(+)(r, t)

⌘
. (21)

Charge and current density operators of Dirac’s field  + at r and t are given,
respectively, by

⇢
(+)(r, t) ⌘ �

e

2

⇣
 †

+(r, t) +(r, t)�  ̃+(r, t) ̃
†
+(r, t)

⌘
, (22)

J(+)(r, t) ⌘ �
e

2

⇣
 †

+(r, t) c↵  +(r, t)�  ̃+(r, t) c↵̃  ̃
†
+(r, t)

⌘
, (23)

where ↵ are Dirac matrices ↵⌫ (⌫ = x, y, z)

↵⌫ =

✓
0 �⌫

�⌫ 0

◆
, (24)

and �⌫ are the Pauli spin matrices. Symbol ⇠ indicates matrix transposition. e > 0
is the electric charge. The Dirac hamiltonian H (t) of the fermions–antifermions’
systems submitted to classical electromagnetic potentials is

H (t) = H
(+)
o (t) + H

(+)
1 (t). (25)

5. Dynamic Equations

We place ourselves in the situation where the electromagnetic potential is uniform
over the entire wave packet of the particle. It is assumed that the wave packet is of
short extension in space with respect to the instrumentation with essentially only
one dominant linear momentum vector p. We neglect the edge e↵ects of the wave
packet (i.e. the presence of other secondary wave vectors). In this case, the potential
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Fig. 2. Schematic experiment with time-dependent vector potential A(t) along the electron beam

and no scalar potential, i.e. �(t) = 0. W: wave packet, M: cylindrical superconductive tube,

S: source of electrons, D: detector.

Fig. 3. Schematic time-dependence of the vector potential: A(t) = AF(t), where A is a constant.

to ⌘ ~/µc2.

becomes independent of the position: �(r, t) ! �(t) and A(r, t) ! A(t). Finally,
the vector potential A(t) is oriented parallel to the linear momentum vector p of
the particle then A(t) = A(t)n, where n = p

|p| and A(t) is a scalar. It is assumed
that the particle is not a↵ected by any electromagnetic field.

Figure 2 gives the schematic experiment. The potential is nonzero only while the
electron is well inside the tube M. When the particle is everywhere outside M there
is no potential. The arrangement must ensure that particles are in a time-varying
potential without ever being in a field. Note that a real action of electromagnetic
potential on charged particle in regions of space where electromagnetic field is zero
has already been demonstrated.19,20 Figure 3 shows the schematic time-dependence
of the vector potential. Under these conditions we will consider two scenarios.

5.1. Scenario 1: Negative mass and energy do not exist

In this scenario, the twin state ✓j,S,p cannot be realized, only state �j,S,p can exist.
Therefore, the evolution of the operators “a” of positive mass and energy over time
in the Heisenberg representation is given by

i~ @

@t
a+,S,p(t) =

⇥
a+,S,p(t),H (t)

⇤
= !

�
o (t)a+,S,p(t) + !1(t)a

†
�,S,�p(t), (26)

i~ @

@t
a†�,S,�p(t) =

⇥
a†�,S,�p(t),H (t)

⇤
= �!+

o (t)a
†
�,S,�p(t) + !1(t)a+,S,p(t), (27)
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where

!
±
o (t) ⌘ "(p)± e�(t) + ceA(t) sin('), (28)

!1(t) ⌘ ce⌘A(t) cos('). (29)

Here, the operators “b” are simply particular linear combinations of the operators
“a”. By finding the “a” we find the “b” via Eq. (11). General solution is given by

a+,S,p(t) = f⇤(t)a+,S,p + g⇤(t)a†�,S,�p, (30)

a†�,S,�p(t) = f(t)a†�,S,�p � g(t)a+,S,p, (31)

with the initial conditions f(0) = f⇤(0) = 1 and g(0) = g⇤(0) = 0. By introducing
(30) and (31) in (26) and (27), we find two sets of coupled di↵erential equations

i~ @

@t
f⇤(t) = !

�
o (t)f

⇤(t)� !1(t)g(t), (32)

i~ @

@t
g⇤(t) = !

�
o (t)g

⇤(t) + !1(t)f(t), (33)

i~ @

@t
f(t) = �!+

o (t)f(t) + !1(t)g
⇤(t), (34)

i~ @

@t
g(t) = �!+

o (t)g(t)� !1(t)f
⇤(t). (35)

Note that if � = 0 this system of four equations reduces to two because !
+
o = !

�
o

and in that case f⇤(t) and g⇤(t) are, respectively, the conjugate complexes of f(t)
and g(t).

5.2. Scenario 2: Negative mass and energy do exist

The twin state ✓j,S,p can also be realized in this scenario. The evolution of the
operators “a” of positive mass and energy over time in (26) and (27) can be rewritten
as follows:

i~ @

@t
a+,S,p(t) = ("(p)� e�(t))a+,S,p(t) + (ce⌘A(t))b†+,S,�p(t), (36)

i~ @

@t
a†�,S,�p(t) = �("(p) + e�(t))a†�,S,�p(t) + (ce⌘A(t))b�,S,p(t). (37)

Operators of fermion a+,S,p(t) and antifermion a†�,S,�p(t) of positive mass and

energy are coupled, respectively, to the operators of antifermion b†+,S,�p(t) and
fermion b�,S,p(t) of negative mass and energy. This is the consequence that the
n ·↵ operation on states with positive mass and energy transforms them into states
of negative mass and energy with opposite charge but same helicity

(n · ↵)�j,S,p = ✓j,S,p. (38)
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↵ is in the coupling term, see Eqs. (21) and (23). Note that if the vector potential
A(t) is oriented perpendicular to the linear momentum p of the particle, the oper-
ators “a” are coupled to each other and not to the operators “b”. This is because
the u · ↵ operation (i.e. u is a unit vector perpendicular to n) on states with posi-
tive mass and energy transforms them into states of positive mass and energy with
opposite charge and helicity (i.e. S0

6= S)

(u · ↵)�j,S,p = ��j,S0,p. (39)

The evolution over time of the operators “b” of negative mass and energy is given
by

i~ @

@t
b†+,S,�p(t) =

⇥
b†+,S,�p(t),H (t)

⇤

= ("(p)� e�(t))b†+,S,�p(t) + (c⌘ eA(t))a+,S,p(t)

� (2µc2)a†�,S,�p(t), (40)

i~ @

@t
b�,S,p(t) =

⇥
b�,S,p(t),H (t)

⇤

= �("(p) + e�(t))b�,S,p(t) + (c⌘ eA(t))a†�,S,�p(t)

+ (2µc2)a+,S,p(t). (41)

These equations can also be obtained by linearly combining the two equations (36)
and (37) in agreement with (11). The factor in front of the operators “b” in the
right-hand side is the associated eigenenergy. Note that the eigenenergies (natural
frequencies) of the operators a+,S,p(t) and b†+,S,�p(t) are identical (i.e. compare
the first terms of Eqs. (36) and (40)) which can lead to a phenomenon of quantum
resonance. Same remark for a†�,S,�p(t) and b�,S,p(t). The last term in the right-
hand side of (40) and (41) comes from the fact that the operators “b” are not
operators of eigenstates or stationary states of H

(+)
o (t). They are therefore subject

to quantum fluctuations which are generated through that term.
The general solution can be expressed as follows:

0

BBBB@

a+,S,p(t)

a†�,S,�p(t)

b�,S,p(t)

b†+,S,�p(t)

1

CCCCA
=

0

BBBB@

f11(t) f12(t) f13(t) f14(t)

f21(t) f22(t) f23(t) f24(t)

f31(t) f32(t) f33(t) f34(t)

f41(t) f42(t) f43(t) f44(t)

1

CCCCA

0

BBBB@

a+,S,p

a†�,S,�p

b�,S,p

b†+,S,�p

1

CCCCA
, (42)

where the flk(t) are scalar functions which depend on time with initial conditions

flk(0) = 1, if k = l,

flk(0) = 0, if k 6= l.

(43)
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When we introduce (42) in Eqs. (36), (37), (40) and (41), we obtain four sets of
four coupled di↵erential equations

i~ @

@t
f1k(t) = ("(p)� e�(t))f1k(t) + (ce⌘A(t))f4k(t), (44)

i~ @

@t
f2k(t) = �("(p) + e�(t))f2k(t) + (ce⌘A(t))f3k(t), (45)

i~ @

@t
f3k(t) = �("(p) + e�(t))f3k(t) + (c⌘eA(t))f2k(t) + (2µc2)f1k(t), (46)

i~ @

@t
f4k(t) = ("(p)� e�(t))f4k(t) + (c⌘eA(t))f1k(t)� (2µc2)f2k(t), (47)

where k = 1–4 which corresponds to the number of each column of the matrix of
flk in (42).

6. Transition Probabilities

Let us consider the case of a particle of mass +µ and electric charge �e in the
vacuum |0ia. It could be an electron.

6.1. Scenario 1

Using (30) and (31) and the fact that

ah0|a+,S,p(0)a
†
+,S,p(0)|0ia = 1,

ah0|a
†
�,S,�p(0)a

†
+,S,p(0)|0ia = 0,

(48)

the probability that having created this electron in the state (S, p) at t = 0 we can
recover it in the same state at t >, 0 is equal to

Pf (t) ⌘ B
�1(t)|ah0|a+,S,p(t)a

†
+,S,p(0)|0ia|

2 = B
�1(t)|f⇤(t)|2, (49)

and the probability we can recover a positron of mass +µ in state (S, �p) at t > 0 is

Pg(t) ⌘ B
�1(t)|ah0|a

†
�,S,�p(t)a

†
+,S,p(0)|0ia|

2 = B
�1(t)|g(t)|2, (50)

where

B
�1(t) ⌘ |f

⇤(t)|2 + |g(t)|2, (51)

is the normalization factor.

6.2. Scenario 2

The measurable probability that having created this electron in the state (S, p) at
t = 0 we can recover it in the same state at t > 0 is equal to

Pm11(t) ⌘ Am(t)�1
��
ah0|a+,S,p(t)a

†
+,S,p(0)|0ia

��2 = Am(t)�1
|f11(t)|

2
, (52)
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and the measurable probability we can recover a positron of mass +µ in state (S,
�p) at t > 0 is

Pm21(t) ⌘ Am(t)�1
��
ah0|a

†
�,S,�p(t)a

†
+,S,p(0)|0ia

��2 = Am(t)�1
|f21(t)|

2
, (53)

where the normalization factor Am(t) is

Am(t) ⌘ |f11(t)|
2 + |f21(t)|

2
. (54)

Note that according to JCM3,7,8 usual measuring devices cannot detect quantum
particles of negative energy (i.e. the “b” operators) unless these detectors have a
negative temperature,4 detectors in a metastable state with relatively high positive
energy.

7. Results and Discussion

The next step is to compare Pf (t) to Pm11(t) and Pg(t) to Pm21(t) which are
measurable with conventional detectors. When A increases or the time interval � t
(during which F(t) in Fig. 3 is di↵erent from zero) increases the probabilities can
display several oscillations in � t. In the following examples, the value of A and the
time interval � t chosen limited the number of oscillations to zero.

Figures 4–7 show the evolution of the probabilities over time. The solid lines are
those of the electron (of positive mass and energy) and the broken lines are those
of the positron (of positive mass and energy). At t = 0 the probability of detecting
a positron is zero since the vector potential is applied only between t = 0.1to and
t = 0.7to (i.e. Fig. 3).

In scenario 1 (i.e. Figs. 5–7) we see that the probabilities depend a lot on the
modulus of the momentum p and the sign of A which is not the case in scenario 2
(i.e. Fig. 4). The temporal behavior of the probability of occurrence of the electron
in detector D (Fig. 2) is therefore significantly di↵erent depending on whether
quantum states with conjugated mass and energy (i.e. negative) exist (scenario 2)
or not (scenario 1).

Fig. 4. Scenario 2.
ceA
µc2

= ±2.64, e�
µc2

= 0,
c|p|
µc2

= 0.0048 and 0.48.
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Fig. 5. Scenario 1.
ceA
µc2

= 2.64, e�
µc2

= 0,
c|p|
µc2

= 0.48.

Fig. 6. Scenario 1.
ceA
µc2

= �2.64, e�
µc2

= 0,
c|p|
µc2

= 0.48.

Fig. 7. Scenario 1.
ceA
µc2

= ±2.64, e�
µc2

= 0,
c|p|
µc2

= 0.0048.

2250013-12



March 2, 2022 16:28 MPLA S0217732322500134 page 13

Experimental test to verify whether quantum states of conjugated mass and energy exist

8. Conclusion

In this work within the framework of the quantum field theory as a result of apply-
ing a time-dependent vector potential, oriented in the direction of the trajectory
of the incident electron screened from electromagnetic fields by a superconducting
tube, we have shown that it would be possible experimentally to highlight signifi-
cant di↵erences in the probabilities of occurrence of electron (of positive mass and
energy) at the exit of the tube in the detector depending on whether quantum
states of electron and positron of negative mass and energy exist or not.
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