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Summary. - -  A new field equation is proposed, associated to an $3 z R1 topology. 
We introduce a differential involutive mapping A which links any point of space a to 
the antipodal region A(a). According to this equation, the geometry of the manifold 
depends both on the energy-momentum tensor T and on the antipodal tensor A(T).  
Considering time-independent metric with low fields and small velocities, we derive 
the associated PoLsson equation, which provides cluster-like structures interacting 
with halo-like antipodal structures. The second structure helps the confinement of 
the first. It is suggested that this model could explain the missing-mass effect and 
the large-scale structure of the Universe. 

PACS 04.90 - Other topics in relativity and gravitation. 

1. - I n t r o d u c t i o n .  

The equilibrium of a galaxy is studied through a certain set of non-relativistic 
equations, as, for example, Vlasov equation coupled to Poisson equation, which comes 
from the general Einstein field equation 

(1) S = ;/T 

plus a steady-state hypothesis in which we take weak fields and small velocities. I t  is 
well known that  the gravitational field due to the visible mass of our galaxy cannot 
balance the centrifugal and the pressure forces. Some people assume that  some 
invisible-mass, dark mat te r  may contribute to the field and balance the centrifugal 
force. In the following we are going to propose another  model, based on a new field 
equation. 

2. - A n e w  f i e l d  e q u a t i o n .  

We assume that  the Universe has the topology of S.~ x Ri .  The Gaussian 
coordinates are 

(2) x -- (x ~ ~), 

(*) For scientific correspondence: 9 tour d'Aygosi, 13100 Aix-en-Provence, France 
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where x ~ is a time marker and the vector 6 represents the spatial markers. 
Space-time is oriented. It is possible to define a differential involutive mapping 
linking a given point a to the antipodal point a*, 

(3) 6" = A(a). 

Consider two tensor fields S and T, defined on the manifold. Suppose that they are 
linked in the following field equation: 

(4) 

with 

(5) 

S = y,(r - A(T) )  

A ( T )  = T* = T(x  ~ 6 " ) ,  

We assume that the light follows the geodesics of space-time, g is the metric 
tensor, R is the Ricci tensor, so that 

(6) g* =g (x  ~ 6") ,  R* = R(x ~ a*).  

We can write the field equation in the more explicit form 

(7) 21 (12 1 ) R - - -  g R  = z T -  g T  T *  g *  - - + - -  T *  . 
2 

Let us write the tensors T and T* as 

(8) T = 

p 0 0 0 

0 P 0 0 
C 2 

0 0 P 0 
C 2 

P 
0 0 0 

C 2 

(9) T* = 

?* 0 0 

p* 
0 0 

C 2 

p* 
0 0 

C 2 

0 0 0 

0 

0 

0 ' 

p* 

C 2 
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with 

z* = ~ ( x  ~ a * ) ,  p*  = p ( x  ~ a * ) .  

I f  we  t ake  the  ze ro -d ive rgence  condition, the  fluid obeys  the  following 
conserva t ion  equat ions:  

(10) ~T = O. 

3 . -  Time-independent conditions with weak fields and small velocities. The 
Poisson equation. 

We can app ly  the  classical me thod ,  t ak ing  a quas i -Loren tz ian  met r ic  

(11) g = ~/+ s$,  

whe re  1/ is the  Loren tz i an  me t r i c  and ~ is a small  p a r a m e t e r .  
In  th ree -d imens iona l  nota t ions  

d2x c 2 c 2 
(12) - Yo0 li = - - - V y 0 o  �9 

dt 2 2 2 

The  Newton ian  law appl ies  over  all space.  In  addition, the  grav i ta t iona l  potent ia l  
is defined as follows: 

C 2 

(13) ~' - ~Yoo �9 
2 

Converse ly ,  g iven the  grav i ta t iona l  potent ia l  ~", the  mot ion  of a par t ic le  will be  
a long a four-d imens ional  geodes ic  if  the  go0 t e r m  of the  me t r i c  t en so r  has  the  fo rm 

(14) g ~ = l  + c2 , 

we ge t  

3 

(15) ~ ~ Yool~l,~ = - Z(, o - z * ) .  
~ = 1  

B y  identif ication we  ge t  the  following Poisson  equation:  

(16) A~ ~ = 4=G(~ - p * ) .  

I f  we consider  a spher ica l ly  s y m m e t r i c  s y s t e m  

d ~  " 2 du  ~ 
(17) - -  + - 4=G(~ - , ~ * ) ,  

d r  9 r d r  

whe re  

-*  = ~(a* ) (18) ,~ , 
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from (17) 

(19) ~*  = -~F .  
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4. - Spher ica l ly  symmetric solution. 

In 1916 Eddington derived a spherically symmetric steady-state solution, 
combining the Vlasov and the Poisson equations. He assumed that  the ellipsoid of the 
velocities was spherically symmetric and pointed towards the centre of the system, 
see fig. 1. 

Eddington derived the following relation between the mass density and the 
gravitational potential: 

(20) ~ = ~0 
exp [ - m~' /kT]  

1 + r '2/r~ 

which represents  a steady-state distribution of mat te r  in a collision-free gas, in a 
gravitational potential ~F, in which the gravitational force balances the pressure 
force. Le t  us take the same kind of solution for the antipodal region, 

exp [ - m ~  ~* /kT] exp [mu 
(21) ,~* = 60 = ,% , 

1 + r 2/r~ 1 + r 2/r~ 

so that  we have to solve the following equation: 

d2~ " 2 du [ 
- -  + - 4rrG,% 

(22) dr  2 r dr  
exp [ - m ~ ' / k T ]  - exp [m~V/kT] 

1 ) 
Take 

(23) 
kT  

ro;~ 4=G,oo m 

ellipsoid of velocities 

z 

Fig. 1. - Ellipsoid of velocities corresponding to an Eddington-type solution. 
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Fig. 2. - Spherically symmetric Eddington-type solution. The gravitational potential. 

o 

Fig. 3. - Spherically symmetric Eddington-type solution. Mass densities. If  a cluster exists in 
one fold, an associated diffuse halo exists in the conjugated region of the second fold. 

I n t roduce  the  following adimens ional  quanti t ies:  

kTo kT ~, ~ " = - - ~ .  
(24) r = 4~Gpo m m 

We ge t  

2 exp [ - ~] - exp [ ~] 
(24a) ~" + - 9 ' =  

1 + (~/)~)~ 

which can be solved by  numer ica l  computa t ion .  We  can t ake  the  following initial 
conditions: 

t I t  
9o = 0 ,  ?o = 10, 2 = 10, 

P = • o  
exp [ - ~o ] exp [ ~ ] 

p * =  

See fig. 2 and 3. 
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5. - The large-size structure of the Universe. 

From eq. (24a) we see that if a cluster exists in one fold, an associated diffuse halo 
structure exists in the conjugated region of the second fold. If this model is correct, 
we should find halo structures in our fold of the Universe. With the help of Dr. Pierre 
Midy, from the University of Orsay, France, we have performed numerical 
simulations, using a Cray-1 computer. We consider two distributions of 350 points. 
The first is represented by little circles and the second by small crosses. At the 
beginning the points are randomly distributed on the screen and are supposed to 
represent two uniform gazes. Each mass owns a random velocity corresponding to an 
isotropic Maxwellian distribution with an averaged thermal velocity (V). Call m~ the 
elements of the first population and m~ the elements of the second population. We 
apply the Newton law with 

i) m~ attracts mm: gravitational effect; 

ii) me attracts ~v2: gravitational effect; 

iii) m~ and n~2 repel each other: antigravitational effect. 

We consider this two-dimensional system as periodic over space. In other terms, 
the upper boundary is linked to the lower one and the right to the left (Euclidean 2D 
torus). So that we can compute the sum of the mutual actions of the particles. For 
each interval of time At we compute the acceleration of each particle and determine 
the trajectory by Taylor expansion. Each particle that comes out through the right 
boundary reappears through the left one, and the same thing occurs for the upper and 
lower boundaries. This makes it possible to study the gravitational instability of 
these two coupled systems in a finite portion of space (with toroidal topology). The 
interval of time is determined in order to get significant computational results. In 
other terms, we demand the trajectory of a particle to be approximatively regular. 
The following figures show the typical behaviour of the system after 4000 intervals of 
time. In fig. 4, 5, and 6 we find both clusters and cellular patterns. This is enhanced in 
fig. 7 and 8. 
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Fig. 4. - Effcct of the gravitational instability on the system 1. 

Fig. 5. - Effect of the gravitational instability on the system 2. 
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F i g .  7. - E n h a n c e d  s p a t i a l  d i s t r i b u t i o n  o f  t h e  t w o  p o p u l a t i o n s .  

F i g .  8. - W h i t e :  p o p u l a t i o n  1. G r e y :  p o p u l a t i o n  2. 

We suggest that such a mechanism could explain the large-scale structure of the 
Universe and the observed distribution of galaxies. Suppose that our fold of the 
Universe corresponds to the population 1. In the right lower part of the screen this 
matter is arranged around large ,,empty>> bubbles. These bubbles correspond to a 
cluster arrangement in the population 2, supposed to be located in the second fold of 
the Universe (in fact the antipodal region), according to our theory. But, as seen in 
fig. 8, for a given population, in some places the matter can be arranged as a Swiss 
<<gruySre>> cheese and in other places as an emulsion. 

These first crude numerical simulations have to be developed with a larger 
number of points and in a three-dimensional representation. We know that the 
three-dimensional behaviour of a system can be somewhat different from the two- 
dimensional one. But we expect the conclusions to be similar. We think that with a larger 
number of points we could get a fractal system, as suggested in fig. 14, but we precise that 
this peculiar computation has not yet been done, it is under study though. According to 
this idea, the galaxie.~ should be located in the holes of the associated anti-matter cloud, 
which would ensure their confinement, as suggested earlier. 
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Fig. 9. - A eouple of antipodal points on a sphere $2 and the Boy surface, image of the projective 
space P,~. 

5. - The interpretat ion of  the solution. 

From fig. 2 we see that the potential u tends to a constant at infinity. In the 
classical Eddington solution the potential owns a logarithmic growth. Figure 3 shows 
the association of a cluster of matter, located in the region a, sourrounded by a 
smooth hollow located in the region a*. 

In both regions matter attracts matter. But the negative sign, from the field 
equation and the Poisson equation, makes the matter and the ,,antipodal matter ,  to 
repel each other. This helps the confinement of the cluster. For a given thermal 
velocity, the necessary quantity of matter to balance the pressure force is smaller. 
The smooth halo acts like a corset. 

A field equation provides a macroscopic description of the Universe. It does not 
take account of the corpuscular nature of matter. The model implies that particles and 
antipodal particles live in very distant, antipodal portions of space. In fact their 
natures are identical. The physical meaning of the field equation is the following: the 
particles and antipodal particles interact by gravitational effect, but not by 
electromagnetic effect. We assume that the antipodal particles, clusters, rings are not 
observable with a telescope, or a radiotelescope. The observation of antipodal 
structures should require some sort of gravitational telescope. 

From eq. (22) clusters can be located in the antipodal region. Then, associated 

f 

Fig. 10. - The vicinity of the equator of a 2-sphere and its location on a Boy surface. 
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Fig. 11. - Enantiomorphic image corresponding to the cover of a MSbius belt. 

Fig. 12. - Two-dimensional image of the global large structure of the Universe. 

large halos, sourrounding wide rarefied regions, should exist in the observable 
Universe too. In fact they do, for it corresponds, in our mind, to the observed 
large-scale structure of the Universe: the galaxies seem to be arranged around large 
rarefied bubbles. According to our model, large clouds of antipodal matter should 
exist in the corresponding associated antipodal regions. 

The Universe was assumed to have an $3 x R1 topology. The reader has probably 
some difficulties to understand this strange three-dimensional geometry. In fact, the 
sphere S:~ is simply shaped as the double cover of a projective space P3. In such 
arrangement each point a of the sphere is associated to its antipode A(a). The 
situation is similar for a sphere $2 covering a projective space P2, which can be 
represented in our space R3 as the well-known Boy surface, see fig. 9. 

In fig. 10 we have figured the equator of a sphere and its location on the Boy 
surface. 

Figure 11 shows how the equator of an $2 sphere can be glued on itself along a 
three half-turns MSbius belt. Locally, the surface can be assimilated to a bundled 
manifold whose bundle owns two values § 1 and -1 .  

In a 3-sphere $3, if one follows a geodesic, the antipodal point is half-way. If the 
3-sphere is immersed in a four-dimensional space, it is possible to make any point and 
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Fig. 13. - The interaction between two antipodal regions. 

@ 

Fig. 14. - Smaller-size structure. 

its antipode to coincide. These couples of points are associated through the antipodal 
diffential involutive mapping A, but not identified. 

As shown in fig. 12, we can proceed continously from a ,g ruyere-  structure to a 
cluster structure. This peculiar feature was illustrated before, through 2d numerical 
simulations. When a region of space is put ,dn front ,  of the antipodal region, as 
suggested in fig. 13, the clusters nest in the holes. 
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This effect could act at the level of the galactic structure, as suggested in 
fig. 14, each galaxy nesting in a ,hole, of the conjugated antipodal region. 

7. - S o m e  c o m m e n t s  a b o u t  t h e  a x i o m s .  

The classical General Relativity proposes a macroscopic description of the 
Universe, shaped by the gravitational field. But, basically, the electromagnetic 
phenomena is not taken into account. In order to link this classical model to the 
observations, one has to bring the following additional axioms: 

i) The Universe is filled by particles: neutral particles with a mass equal to m, 
and photons. Both contribute to the field. 

ii) These particles move along geodesics of space-time. 

iii) A particle may send an electromagnetic signal. 

iv) Another particle may receive this electromagnetic signal. 

v) This electromagnetic signal, carried by photons, follows the null geodesics 
of space-time. 

vi) A massive particle may send a gravitational signal, which is supposed to 
follow a null geodesic. 

vii) A massive particle may receive this gravitational signal. 

So that, for an observer composed by matter, the Universe becomes optically 
perceptible, according to these axioms. The photons are the go-betweens bringing an 
optical message from a massive particle to another. 

In the present model, the Universe is to be considered as a cover of an S~ sphere; 
locally we have a structure similar to a bundled manifold, whose bundle should be 
limited to two values, + 1 and -1.  Then we introduce the new following axioms: 

i) The Universe is filled by particles: neutral particles whose mass is equal to 
m, and by photons. Both contribute to the field. 

ii) The massive particles and the photons move along the geodesic of space-time 
and cannot cross from a region to the conjugated antipodal region of $3. 

iii) A massive particle may send electromagnetic and gravitational signals, 
which can be received by another massive particle. 

iv) The gravitational signal travels along the geodesics of space-time, but also 
along the geodesics of the ,,adjacent folds of the Universe,, ,,through the bundle 
structure, so that the gravitational signal owns some sort of ubiquity, because it acts 
both in a region of the manifold and in the antipodal region (or, in other terms, in the 
,,adjacent region,, if we choose the bundled-manifold image). 

v) The structure of the new field equation brings the following features: If a 
gravitational signal is emitted and received by two particles which ,(belong to the 
same fold,, the phenomenon identifies with the classical description. But a 
gravitational signal emitted by a massive particle can be received by another particle 
located in the adjacent region (the antipodal region); in other terms ,,through the 
bundle structure,, the negative sign in the second member of the field equation 
changes the nature of the signal, as if it were emitted by a ,,negative mass,. 
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vi) The electromagnetic signal follows the ordinary null geodesics of the 
manifold, but does not own this property of ubiquity. It cannot cross from a fold to 
the <,adjacent fold through the bundle structure>>. To travel from a region of the 
manifold to the antipodal region, light has to do a complete half-turn of the S~ sphere. 

We confess that this proposed geometric description remains primitive and 
somewhat unclear. A correct description should imply a more refined model, 
including the gravitational and electromagnetic phenomena, i.e. a unified theory, 
which does not exist presently. 

The bundled-manifold local description is similar to a 5d Kaluza model, in which 
the fifth dimension would be limited to two values + 1 and -1 ,  as suggested earlier 
by Alain Connes. 

8. - E s t i m a t i o n  o f  t h e  - m i s s i n g - m a s s  effect>>. 

(25) ~"= Fo + ~7 '~, 

with the first-order solution 

(26) ~ '  = ,oo, 

The Poisson equation gives 

(27) 

Apply a perturbation method to the Euler equations: 

~"* = W~' + ~V* 

A~/" 0 = 0. 

A~V = 4=G~0 exp - ~  - exp -kT ' 

[~, o=~oexp  k T  J '  $P~ =,~o exp  - k---T- ' ~J '= - ~F* , 

8=G~o 
(28) A~F + - -  ~"  = 0. 

k T  

L~ is the classical Jeans length 

(29) L j  - -  - -  , 
47:G~0 

(30) A~Y p + 2 L--~ = 0. 

This is the well-known Helmoltz equation. 
In classical steady-state approach we had 

(31) A~" + L~ 0. 

The interaction with the antipodal region shortens the Jeans length by a factor 
1.414, SO that we have a confinement effect. If we have a positive concentration of 
matter ~ in our space-time fold, we will find a negative ~,~ * in the associated antipodal 
region, and vice versa. The confinement of the mass due to the action of the antipodal 
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region should reduce the necessary mass to balance pressure or centrifugal force by a 
factor 

1 
- 0.353. 

2a/2 

9. - Wri t ing  the  e q u a t i o n  in a complex form. 

Write 

S1 = S ( x ~  a), 

& = S(x ~ a* ), 

T, = T ( x  ~ a), 

(32) ~ = T(x o, ~* ), 

X = l i  + "iI,e, 

r =  rl + ive ,  

V c = V 1 - iv 2 . 

Equation (4) can be written as 

(33) 2: = ~(r - i re ) .  

As suggested previously by Penrose, the quantification of the gTavitation could be 
due to the complex form of the field equation. Equation (33) could perhaps bring a 
new insight into the problem. 

10. - C o n c l u s i o n .  

We propose a new field equation, from which, with the classical approximation: 
steady state, weak fields, low velocities, we derive the associated Poisson equation. 
Coupled Eddington solutions give a set of clusters, associated to interacting ring-like 
clouds, located in the antipodal region. The antipodal halo-like structure repels the 
cluster and helps its confinement. The reduction factor is roughly evaluated. It is 
suggested, through 2d numerical simulations, that this model could explain the 
large-scale structure of the Universe. In addition, the interaction between a cluster 
and its associated antipodal structure could provide spiral structure. A collision of a 
cluster with an anti-cluster could also explain the very irregular galaxies. 
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