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We reconsider the classical Schwarzschild solution in the context of a Janus cosmological
model. We show that the central singularity can be eliminated through a simple coordi-
nate change and that the subsequent transit from one fold to the other is accompanied
by mass inversion. In such scenario matter swallowed by black holes could be ejected as
invisible negative mass and dispersed in space.
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1. Introduction

When Schwarzschild published his solution1 of Einstein equation, in 1916, the basic
hypothesis was just time-independence and spherical symmetry. Nobody suspected
that there was an additional one: null-homotopy. The consequence of this last one
was that, in the proposed solution, r was a radial coordinate:

ds2 =

(
1− Rs

r

)
c2 dt2 − dr2(

1− Rs
r

) − r2(dθ2 + sin2 θ dϕ2) . (1)

A first problem at r = Rs, considered as coordinate singularity, was eliminated by
various coordinates changes. See Fig. 1.

But r = 0 was considered as a true singularity, a point of space where the
geodesics end. The goal of this paper is to show, through a very simple coordinate
change, that this so-called “central singularity” is due to a wrong choice of local
topology.

We must introduce the concept of representation space which is the space in
which we build a mental image of an object. As an example we believe we live in
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Coordinates Line element

Eddington–Finkelstein
(ingoing)

(
1−

rs
s

)
dv2 − 2 dv dr − r2 dΩ2

regular at horizon,
extends across
future horizon

Eddington–Finkelstein
(outgoing)

(
1−

rs
s

)
du2 + 2 du dr − r2 dΩ2

regular at horizon,
extends across
past horizon

Gullstrand–Painlevé

(
1−

rs
r

)
dT 2 − 2

√
τs
r
dT dr − dr2 − r2 dΩ2 regular at horizon

Isotropic

(
1− rs

4R

)

(
1 + τs

4R

)2 dt
2 −

(
1 +

rs
4R

)4

(dx2 + dy2 + dz2)
isotropic lightcones
on constant
time slices

Fig. 1. Schwarzschild’s geometry. Alternative coordinates.2–7

R3 and that space and time are separated. This old belief is useful and enough
for today’s life. But if the speed of light was much smaller we should shift to
Minkowski’s spacetime. Similarly, when we send a probe to Jupiter or predict an
eclipse we neglect space curvature. If this last was not neglectible, we should use
Einstein’s equation instead of Newton’s. If we intend to describe an object through
a line element it is easy to show, through 2D examples that inadequate coordinate
choice may induce wrong image of a geometric object. For example, consider the
following metric:

ds2 =
dr2

1− r2

R2
s

+ r2 dϕ , (2)

whose signature (+,+) changes into (−, +) when r > Rs. But, through the simple
following coordinate change

r = Rs sin θ , (3)

this object becomes a sphere:

ds2 = R2
s(dθ

2 + sin2 θ dϕ2) . (4)

Another example. Consider the metric:

ds2 =
dr2

−r2 + 2rR + r20 −R2
+ r2 dϕ2 . (5)

The signature is (+,+) if

R− r0 < r < R+ r0 , (6)

but through the new coordinate change

r = R+ r0 cos θ , (7)
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we get the well-known metric of the torus:

ds2 = r0 dθ
2 + (R+ r0 cos θ)dϕ

2 . (8)

Now, let us focus on the space part of Schwarzschild’s line element, limited to {r,ϕ}
coordinates:

dΣ2 =
dr2

1− Rs
r

+ r2 dϕ2 . (9)

For r < Rs, the signature (+,+) is changed into (−,+). Let us make the change of
variable:

r = Rs(1 + Log ch ρ) , (10)

which gives:

dΣ2 = R2
s

[
(1 + Log ch ρ)

Log ch ρ
th2 ρ dρ2 + (1 + Log ch ρ)2 dϕ2

]
. (11)

All singularities disappear, r = Rs corresponds to ρ = 0. In this point the determi-
nant of the metric

det g = R4
s
(1 + Log ch ρ)2

Log ch ρ
th2 ρ ,

is no longer zero. The metric is well defined for all values of ρ. If we embed the
surface in a 3D-Euclidean space we can define the meridians, corresponding to

dΣ2 =
dr2

1− Rs
r

+ dz2 . (12)

And we immediately get the meridians as

z = ±2Rs

√
r

Rs
− 1 , r2 = Rs +

z2

4Rs
. (13)

The surface is a space bridge, a “2D diabolo” linking two 2D-Euclidean surfaces.
The problem of the signature has disappeared. From Lagrange equations we

can calculate the geodesics in the [ρ,ϕ] coordinate system. If embedded, the surface
owns a throat circle whose perimeter is 2πRs. We can shape the surface as a twofold
F (+) and F (−) cover of aM2 manifold with a 1D common circular border, and create
induced mapping between adjacent points M (+) and M (−).

Figure 4 shows the projection αβ γ of a geodesic ABC (see Fig. 2) tangent to
the common boundary, which ensures the continuity of the geodesics of the fold
F (+) with the ones of the fold F (−) (dotted lines). Radial line λµ ν is the image of
a geodesic meridian curve LMN of Fig. 2. This will be important for the following.

Figure 5 shows how vicinities of adjacent points are linked by enantiomorphy
relationship.
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Fig. 2. The 2D diabolo embedded in R3.

Fig. 3. Twofold cover of a manifold with a circle as common boundary.

Figures 3–5 correspond to a reduction of our representation space to a 2D
Euclidean representation space, through a non-isometric imbedding which artifi-
cially transforms the throat into a pleat and couples points through an adjacent
and enantiomorphic relationship. “The circle owns no center and there is nothing
inside”, because we are out of the considered 2D surface, the 2D diabolo.

Now introduce the 3D metric

dΣ2 =
dr2

1− Rs
r

+ r2(dθ2 + sin2 θ dϕ2) , (14)
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�
Fig. 4. Projection of geodesics.

Fig. 5. When the triangle crosses the common boundary, its orientation is reversed.

which is Euclidean at infinity. When r < Rs the signature (+ ++) is changed into
(− ++). Applying (10) we get

ds2 = R2
s

[
(1 + Log ch ρ)

Log ch ρ
th2 ρ dρ2 + (1 + Log ch ρ)2(dθ2 + sin2 θ dϕ2)

]
. (15)

Its determinant never vanishes. The metric is well defined for all values of ρ and
is Euclidean at infinite. It is a 3D space bridge linking to 3D Euclidean spaces. Its
throat, corresponding to ρ = 0, is a S2 sphere.

Unfortunately we do not own a 4D Euclidean representation space to operate
an isometric imbedding. So that, similarly as in Fig. 3, we will use a non-isometric
imbedding in 3D Euclidean space. Then the throat is converted into a “pleat”
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Fig. 6. When geodesics of the 3D hypersurface cross the throat sphere they appear tangent to
it in this 3D non-isometric imbedding in a 3D Euclidean space.�

�
Fig. 7. Oriented tetrahedron.

along the projected S2 sphere. Similarly, some geodesics, continuous in this 3D
hypersurface, seem to turn back on the sphere (see Fig. 6).

To show 3D space orientation we will use a tetrahedron (see Fig. 7). To illustrate
the enantiomorphy relationship we need to project this object through the S2 throat
sphere, each vertice following a geodesic, as showed in Fig. 8.

In the 2D {ρ,ϕ} representation the adjacent points are defined by the relation:

M : (ρ, θ) → M ′ : (−ρ, θ) .

In the 3D {ρ, θ,ϕ} representation the adjacent points in 2D and 3D are defined by
the relation:

M : (ρ, θ,ϕ) → M ′ : (−ρ, θ,ϕ) .

The association of points M and M ′ goes hand in hand with an enantiomorphic
relation between their corresponding neighborhoods.

1550051-6
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�
Fig. 8. By crossing the throat sphere, the tetrahedron is inverted.

Now let us go back to (2) and apply (10). We get

ds2 =
Log ch ρ

1 + Log ch ρ
c2 dt2 −R2

s

[
(1 + Log ch ρ)

Log ch ρ
th2 ρ dρ2

+(1 + Log ch ρ)2(dθ2 + sin2 θ dϕ2)

]
. (16)

When ρ tends to ±∞, Log ch ρ → ρ and th ρ → 1. The metric tends to Lorentz
metric. Space is extended to (ρ > 0; ρ < 0) domain. The hypersurface becomes a
spacetime bridge, linking two Lorentz spaces through a throat surface S2. When we
calculate the geodesics in the plane θ = π

2 in the {t, r, θ,ϕ} representation we find
the following (Eq. (6.90) in Ref. 8):

dϕ = ± 1

r2
dr√

c2l2−1
h2 + Rs

h2r − 1
r2 + Rs

f3

, (17)

where l and h are the classical parameters of the quasi-Keplerian trajectory
(Eqs. (6.80) and (6.81) in Ref. 8). On the Schwarzschild’s sphere (r = Rs) we
get:

tgα = Rs

∣∣∣∣
dϕ

dr

∣∣∣∣
r=Rs

=
h

Rscl
. (18)

In a {t, ρ, θ,ϕ} representation, with θ = π
2 , we obtain curves ρ = f(ϕ) that will be

inscribed in two (adjacent) folds F (+) and F (−).
With

(tgβ)ρ→0 =
ρ dϕ

dρ
=

r dϕ

dr

ρ

r

dr

dρ
=

h

R2
scl

ρ2 → 0 . (19)
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Fig. 9. Geodesical path in a [ρ,ϕ] representation (plane, θ = π/2).

The throat sphere r = Rs is reduced to a point. But the geodesics of the fold F (+)

can be prolonged continuously in the adjacent fold F (−). The central singularity
disappears. Now let us deal with spacetime structures.

Referring to Introduction to General Relativity, Sec. 2.6 of Ref. 8:

Fig. 10.

By letting a family of geodesics play a particular role among the coordi-
nates lines Gauss introduced a useful coordinate system. Consider a 4D
space with hyperbolic metric with signature (1,−1,−1,−1). Assume we
can imbed a 3D hypersurface Σ3, imbedded in the 4D space Σ4. Assume,
in some place, we can define a vector n normal to Σ3, which satisfies:

n0n0 + (n1n1 + n1n1 + n1n1) > 0
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�
Fig. 11. Building a 3D spacetime.

which, in the familiar language of special relativity theory, implies that Σ3

is “oriented in space” (whereas the vector n, normal to s, is “oriented in
time”).

We introduce in the surface Σ3 three coordinates x∗1, x∗2, x∗3 which
serve to characterise the point P∗ ∈ Σ3. Through each point P∗ of the 3D
surface Σ3 we draw the geodesic which is orthogonal to Σ3 at P∗. These
geodesic will form a non-intersecting curves in some neighborhood M of
Σ3 such that, through each point P of M there will be exactly one of
the geodesics constructed. We introduce now, in the entire 4D domain M ,
coordinates as follows: Given P , we consider the geodesic passing through
P and its original point P∗ ∈ Σ3. We define the coordinate xi of P in terms
of the arc length P ∗ P of the geodesic and of the coordinate x∗i of P∗.

In this manner, the three coordinates x1, x2, x3 remain constant along
any geodesic perpendicular to Σ3. It follows that, along such a geodesic,

ds2 = (dẋ)2 , g00 = 1 .

This is the classical way Gaussian coordinates are defined. This is possible if and
only if g00 ̸= 0 , if the term of the line element related to time-marker is nonzero.
Note that, in Fig. 1, through various choices of coordinate systems, in Schwarzschild
solution this term g00 (called gtt) vanishes on the so-called horizon (r = Rs), or
throat surface (ρ = 0). It means that on this peculiar portion of the hypersurface,
normal vector and space orientation cannot be defined.

Let us build a 3D spacetime on a 2D surface, as the twofold cover of a manifold
M2, as shown in Fig. 11.

As shown in Fig. 12 we will find some problem at the common boundary, where
it is impossible to define space orientation and arrow of time (identified to normal
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�

Fig. 12. In turning the throat circle, the arrow of time is inverted.

vector). But, for adjacent regions we have imbricated PT-symmetrical spacetime
structures. Such coupling concept, called at that time “twin universe theory”, was
first presented by Sakharov in 196712–15 and later in Ref. 11. In addition, this goes
with recent works9,10 (Janus Cosmological Model).

We have to deal with 4D spacetime, not 3D spacetime, which is just a didactic
image of such geometric structure.

Back to the expression of the Schwarzschild metric in the new coordinates (16)
we see that, on the throat surface (ρ = 0), gtt vanishes (as well as in expressions
shown in Fig. 1). According to Sec. 2.6 of Ref. 8, Gaussian coordinates cannot be
defined, which means that on the throat surface, time and space cannot be oriented.
This fits time and space inversion from fold F (+) to fold F (−), so that we must write
joint metrics:

ds(+)2 =
Log ch ρ

1 + Log ch ρ
c2 dt(+)2 −R2

s

[
(1 + Log ch ρ)

Log ch ρ
th2 ρ dρ2

+(1 + Log ch ρ)2(dθ2 + sin2 θ dϕ2)

]
, (20a)

ds(−)2 =
Log ch ρ

1 + Log ch ρ
c2 dt(−)2 −R2

s

[
(1 + Log ch ρ)

Log ch ρ
th2 ρ dρ2

+(1 + Log ch ρ)2(dθ2 + sin2 θ dϕ2)

]
, (20b)

with

t(−) = −t(+) . (21)

In the neighborhood of ρ = 0 it is possible to write the nearby expressions:

(ds(+))2 =
ρ2

2
(dt(+))2 − 2 dρ2 −R2

s dϕ
2 , (22a)
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(ds(−))2 =
ρ2

2
(dt(−))2 − 2 dρ2 −R2

s dϕ
2 . (22b)

The inversion of the time variable does not imply a change in the sign of the proper
time, and from one fold to the other ds(−) takes the reins of ds(+). It is not possible
to have an inversion in the length measure along a geodesic. In other words we
have (ds(+))(ds(−)) > 0. But t(+) and t(−) are nothing more than “time markers”,
simple coordinates, and thus one will have: dt(−) = −dt(+). So here one finds again
the central idea of differential geometry: the length element has an only intrinsic
reality. Lagrange equations give always in the vicinity of ρ = 0 the relations:

ϕ̈ = ρ̈ = 0 . (23)

These functions are linear and monotonic as a function of the proper times (lengths
s(+) and s(−)) that enchain themselves in passing from one fold to the other without
inversion.

dt(+)

ds(+)
=

C

ρ2
,

dt(−)

ds(−)
=

−C

ρ2
, C = Cst . (24)

The sign of the constant C depends on the sense adopted for the passage from one
fold to the other. The object is thus a “black hole” and a “white fountain” at the
same time. But, if measured with variable t(+) the passage is achievable only in an
infinite time. If the object results from the implosion of a neutron star, its mass
would be transferred to the negative energy region. But for the observers located in
one of the folds such phenomena of implosion–explosion will appear to be “freezed
in time”.

As shown in Ref. 16 time-inversion goes with mass and energy inversion. In
Refs. 11 and 12, according to Janus Cosmological Model the universe is composed by
positive and negative energy (and mass if they own) particles, respectively described
by metrics g(+)

µν and g(−)
µν , solutions of a coupled field equation system. Spacetime

bridges operate mass inversion. From Ref. 11 we know that masses with opposite
signs repel each other. On another hand negative matter does not interact with
positive matter by electromagnetic, strong or weak interaction.

2. Conclusion and Discussion

If black holes exist and swallow matter this last, instead to be crushed in a central
singularity, would be discretely rejected as an invisible negative matter.

The main feature of the theory presented here is the mass (and space) inversion
process. The advantage is to avoid the puzzling problem of a “central singularity”
and to explain the fate of matter swallowed by black holes. But it implies injection
of negative energy (and mass if the own) particles in spacetime, considered as a
manifold plus two metrics g(+)

µν and g(−)
µν .

As precised in Ref. 9 we assumed that particles of opposite masses do not interact
neither by electromagnetic forces nor strong or weak forces, they could not enter
into a collision. Some colleagues have criticized this idea arguing that “the particles
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are on the same spacetime”. The answer to this question is: if one considers the
problem on purely geometrical grounds, those encounters would be “geometrically
impossible” because the two subsets move along disjoint families of geodesics.

A second criticism may rely on the immediate instability of a quantum vacuum
which could create pairs (+m, −m). But it is based on the theoretical framework
of quantum gravity that, however, still today remains purely hypothetical. The
creation and annihilation of pairs of particles of opposite mass has not been de-
scribed till today.

A third criticism may issue from Quantum Field Theory, which excludes straight
away states of negative energy “because a particle could not have an energy less than
that of the vacuum” (p. 76 of Ref. 17). We quote:

If we suppose that T is linear and unitary then we should face the disastrous
conclusion that for any state Ψ of energy E there is another state T−1Ψ of
energy −E. To avoid this we are forced here to conclude that T is anti-linear
and anti-unitary.

In order to refute this statement we would say that it is bootstrap talk and that
the conclusion is contained in the hypothesis, as occurs with the “CPT theorem”.

In his book Weinberg,17 let us quote his sentence on p. 104:

No examples are known of particles that furnish unconventional representa-
tion of inversions, so these possibilities will not be pursued here. From now
on, the inversions will be assumed to have the conventional action assumed
in Sec. 2.6.

This sentence refers of course to the hypothesis expressed on p. 76 of Ref. 17 about
the anti-unitary and anti-linear character of the T operator. However, cosmic ac-
celeration implies the action of a negative pressure and hence of negative energy
(pressure is an energy density by unit volume). The discovery of such quite un-
foreseen phenomenon18–27 makes it compelling for Quantum Field Theory to be
extended in order to include negative energy states.
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Erratum

z2

4Rs
r = Rs +


